Главная > Губерния > Челябинские ученые оптимизировали управление транспортными потоками через подсчет скорости автомобилей

Челябинские ученые оптимизировали управление транспортными потоками через подсчет скорости автомобилей


13 января 2021, 14:00. Разместил: AzAzA
Челябинские ученые оптимизировали управление транспортными потоками через подсчет скорости автомобилей Источник: пресс-служба ЮУрГУ




Ученые Южно-Уральского государственного университета решили проблему измерения скорости автотранспорта при использовании интеллектуальных транспортных систем (ИТС). Это развернутые уличные сенсорные сети, использующие обзорные камеры для получения цифровых данных из визуального потока.ИТС реагирует на изменения параметров дорожного движения в режиме реального времени, а также предсказывает их. Однако точность подсчета и определения транспортных средств в современных реалиях требует корректировки. В случае с измерением скорости транспорта процесс осложняется большим количеством возможных траекторий движения, а также направлением центра обзора камеры, которое не перпендикулярно траекториям движения транспортных средств.Целью исследования ученых ЮУрГУ была разработка системы качественного и полного сбора данных в режиме реального времени, таких как интенсивность транспортного потока, направления движения и средняя скорость движения транспортного средства.«Данные собираются в пределах всей функциональной зоны перекрестков и прилегающих участков дорог, которые попадают в зону действия камер уличного видеонаблюдения. Наше решение основано на использовании архитектуры нейронной сети YOLOv3 и трекера с открытым исходным кодом sort. Основные характеристики YOLO были улучшены с помощью дополнительной ветви маски и оптимизации формы якорей», — рассказал к.т.н., доцент кафедры «Автомобильный транспорт» Автотранспортного факультета Политехнического института ЮУрГУ Владимир Шепелёв.Скорость транспортного средства (км/ч) рассчитывалась из соотношения между пикселями изображения и шириной дороги, а координаты исходного автомобиля преобразовывались в географические. Метод протестировали ночью и днем на шести перекрестках Челябинска. Абсолютная процентная точность подсчета транспортных средств составила не менее 92%, а погрешность определения скорости автомобиля не превышала 1,5 километра.В результате ученые получили методику, которая дает возможность генерировать полные и качественные данные управления трафиком в реальном времени, снижая требования к периферийному оборудованию. Технологию смогут применять в городах, где существуют проблемы с регулированием трафика, для их быстрого и эффективного решения.Результаты исследования были опубликованы в высокорейтинговом журнале «Journal of Big Data» (Q1). Исследования ведутся в рамках междисциплинарного проекта «Умный транспорт».Подробнее об исследовании читайте на сайте Южно-Уральского государственного университета.

Вернуться назад